

Sample Question Paper

Name of Programme	: B.A. / B. Sc. Mathematics
Semester	: 2 nd semester
Paper type	: GE
Paper Code	: GMA 104
Paper title	: Vector Analysis and Solid Geometry
Full Marks	: 80
Pass Marks	: 35

Duration : 3 Hours

The figures in the margin indicate full marks for the questions.

Answer all the questions

1. Choose and rewrite the correct answer for each of the following : 1X 3=3

a) The volume of a parallelopiped whose co-terminous edges represented by $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + 2\hat{k}$, $\vec{c} = 2\hat{i} + \hat{j} - \hat{k}$ is

(i) 6
 (ii) 8
 (iii) 12
 (iv) 14

(b) The centre of the sphere $x^2 + y^2 + z^2 + 2ux + 2wz + d = 0$ is

(i) (u, v, w)
 (ii) $(-u, -v, -w)$
 (iii) $(-u^2, -v^2, -w^2)$
 (iv) (u^2, v^2, w^2)

(c) The equation of hyperboloid of one sheet is

(i) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
 (ii) $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
 (iii) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$
 (iv) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$

2. Write very short answer for each of the following questions: 1X6=6

a) Find div F where $F = \text{grad}(x^2 + y^2 + z^3 - 3xyz)$

b) If $\vec{a} = \hat{i} - 2\hat{j} - 3\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{c} = \hat{i} + 3\hat{j} - \hat{k}$ find $\vec{a} \times (\vec{b} \times \vec{c})$

c) Define right circular cylinder.

d) Find the equation of the sphere whose diameter is the line joining the origin to the point $(2, -2, 4)$.

e) What is meant by director sphere?

f) How many normals can be drawn to a paraboloid from a given point (x', y', z') ?

3. Write short answer for each of the following questions :

3X5=15

- If the position vectors of the three points A,B,C are respectively $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 3\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$, find a vector perpendicular to the plane ABC.
- Find the equation of the sphere having the circle $x^2 + y^2 + z^2 + 10y - 4z - 8 = 0$, $x + y + z = 3$ as great circle.
- Find the equation of the cone whose vertex is (α, β, γ) and the base is the parabola $z = 0, y^2 = 4ax$.
- Obtain the equation to the tangent planes to $7x^2 - 3y^2 - z^2 + 21 = 0$ which pass through the line $7x - 6y + 9 = 0, z = 3$
- Find the enveloping cone of the sphere $x^2 + y^2 + z^2 - 2x + 4z = 1$ with its vertex at $(1, 1, 1)$.

4. Write short answer for each of the following questions:

4X5=20

- If $F = 3xy \hat{i} - y^2 \hat{j}$, evaluate $\int_c \vec{F} \cdot d\vec{r}$, where c is the curve $x = t, y = 2t^2$ from $t = 0$ to $t = 1$
- If $\vec{r} = a \cos t \hat{i} + a \sin t \hat{j} + at \tan \alpha \hat{k}$, then find the value of $\left| \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right|$.
- Find the equation of the right circular cylinder having for its base the circle $x^2 + y^2 + z^2 = 9, x - y + z = 3$.
- A sphere of constant radius k passes through the origin and cuts the axes in A,B and C. Prove that the centroid of the triangle ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$.
- If the axes are rectangular, find the locus of the equal conjugate diameters of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

5. Answer any two of the following questions:

6X2=12

- Verify Stoke's theorem for $(\vec{F} = xy^2 \hat{i} + y\hat{j} + z^2 x \hat{k})$ for the surface of a rectangular lamina bounded by $x = 0, y = 0, x = 1, y = 2, z = 0$.
- State and prove Gauss's theorem of divergence.
- Use Green's theorem to evaluate $\int_c x^2 dx + xy dy$ where c is the sphere formed by the lines $x = 0, y = 0, x = a, y = a$ ($a > 0$) described in the anti-clockwise direction.

6. Answer any tow of the following questions:

6X2=12

- Find the equation of the sphere which passes through the circle $x^2 + y^2 + z^2 - 2x + 2y + 4z - 3 = 0, 2x + y + z = 0$ and touches the plane $3x + 4y - 14 = 0$.
- Obtain the equation of the cylinder whose generators are parallel to $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and whose guiding curve is the ellipse $x^2 + 2y^2 = 1, z = 3$.

c) Prove that the equation $\sqrt{fx} \pm \sqrt{gy} \pm \sqrt{hz} = 0$ represents a cone that touches the co-ordinates planes; and that the equation to the reciprocal cone is $fyz + gzx + hxy = 0$.

7. Answer any two of the following questions:

6X2=12

- a) Find the condition that the plane $lx + my + nz = p$ should touch the central conicoid $ax^2 + by^2 + cz^2 = 1$ and find the co-ordinates of the point of contact to the conicoid.
- b) Prove that the plane $2x - 4y - z + 3 = 0$ touches the paraboloid $x^2 - 2y^2 = 3z$ and find coordinates of point of contact.
- c) Prove that two normals to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, lie in the plane $lx + my + nz = 0$ and the line joining their feet has direction cosines proportional to $a^2(b^2 - c^2)mn$, $b^2(c^2 - a^2)nl$, $c^2(a^2 - b^2)lm$. Also obtain the co-ordinates of these point.